
Journal of Sound and <ibration (2000) 231(5), 1321}1338
doi:10.1006/jsvi.1999.2734, available online at http://www.idealibrary.com on

00
CONTROL OF ADAPTIVE SHELLS WITH THERMAL
AND MECHANICAL EXCITATIONS

R. YE

Federal-Mogul Corporation, MI 48034, U.S.A.

AND

H. S. TZOU

Department of Mechanical Engineering, Center for Manufacturing Systems,
;niversity of Kentucky, ¸exington, K> 40506-0108, ;.S.A.

(Received 4 March 1998, and in ,nal form 15 October 1999)

Shell-type components and structures are very common in many mechanical and
structural systems. Modelling and analysis of adaptive piezothermoelastic shell
laminates represent high level of sophistication and complexity. Accordingly,
a numerical method is developed to investigate the complicated temperature,
mechanical, and control interactions of piezothermoelastic shell composites in
this study. Constitutive equations and governing equations of a generic
piezothermoelastic continuum are de"ned "rst. Strain}displacement relations,
electric "eld}potential relations, thermal gradient}temperature relations of
laminated shell composites are then de"ned. A new piezothermoelastic composite
triangular shell "nite element is formulated and developed. Matrix equations of the
piezothermoelastic shell laminate are derived, in which mechanical, temperature,
and electric force vectors are also de"ned. The electric force vector is used to active
control of the shell laminates. Finite element solutions of a piezoelectric laminated
composite plate are compared with experimental data and numerical solutions
"rst. Distributed control of a piezoelectric laminated semicircular shell subjected to
mechanical and temperature (thermal shock) excitations is investigated and control
e!ectiveness evaluated.

( 2000 Academic Press
1. INTRODUCTION

Recent research and development of smart structures and structronic systems has
promised new design opportunities for the next-generation high-performance
mechanical and structural systems, ranging from micro-electromechanical systems
to aircrafts and aerospace systems. There are a number of active electromechanical
materials, such as piezoelectrics, shape-memory alloys, electrostrictive materials,
electromagnetostrictive materials, electro- and magneto-rheological materials, etc.,
investigated today [1]. Piezoelectric materials are probably the most popular
active material used in both sensor and actuator applications. Classical distributed
sensing and control characteristics have been investigated in recent years [2].
22-460X/00/151321#18 $35.00/0 ( 2000 Academic Press
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Distributed control e!ects of one-dimensional and two-dimensional planar
structures, e.g., beams and plates, are studied and compared [3}8], and also rings
and shells [9}12]. Temperature in#uences on piezoelectric sensors and actuators of
beam-type precision devices have been studied based on a thin piezothermoelastic
solid "nite element [13]. Shell-type components and structures are very common in
many mechanical and structural systems, e.g., nozzles, pressure vessels, storage
tanks, rockets, antenna dishes, etc. Modelling and analysing of adaptive
piezothermoelastic shell laminates represents a high level of sophistication and
complexity [2, 11]. In general, theoretical solutions of shell composites are scarce
and experiments are also di$cult to conduct. This paper is to investigate the
modelling and active vibration control of piezoelectric laminated shells subjected to
mechanical and temperature (thermal shock) excitations using a numerical
technique. Fundamental piezothermoelasticity is reviewed "rst and followed by the
development of a new piezothermoelastic triangle composite shell "nite element
including the temperature e!ect, extended from the piezoelastic shell element [14].
Distributed vibration controls of mechanical and/or thermal shock-induced
vibrations of plate and shells are investigated and compared.

2. LINEAR PIEZOTHERMOELASTICITY

For a piezothermoelastic medium, with a volume < and a limited surface area S,
subjected to combined thermal, electric, and mechanical excitations, the linear
governing equations, including the coupling among deformation, electric potential,
and temperature "elds, can be grouped as follows [13, 15].

Governing equations
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temperature, acceleration, entropy density, mass density, body force, heat
conductivity coe$cient, and reference temperature respectively. Note that
Einstein's summation convention is used in the expressions. The system will be
highly non-linear only at the most initial time of thermal shock. Because the
controlled responses at a certain period of time are of interest in this study, the
system is still considered to be linear.

Constitutive equations
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strain, and initial strain respectively; a
v
is a material constant (a

v
"oc

v
h~1
0

) where
c
v

is the speci"c heat at constant volume. In addition, the superscripts E, h and
S denote the coe$cients de"ned at a constant electric "eld, temperature and strain
respectively.

Boundary conditions on boundary surfaces
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where;
i
is the displacement, / is the electric potential, f

i
is the surface force, Q is the

charge, q
s
and q

h
are the surface heat #ux, h

v
is the thermal convection coe$cient,

l
i
is the direction cosine components, ( .1 ) denotes a known boundary value, and h

=
is the environment temperature.

Using the weighted residual method and introducing arbitrary weighting
quantities d;

i
, d/, and dh [16], one can rewrite the weak form of the equilibrium

equations (1) to (3) as
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where the quantities d;
i
, d/ and dh can be de"ned as the virtual displacement,

electric potential and temperature, respectively. Integrating each term by parts,
taking into account of boundary conditions in equations (7)} (13), and noting that
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Note that equations (17)} (19) are the virtual work expressions of the
piezothermoelastic continuum.

3. LAMINATED PIEZOELASTIC SHELLS

A laminated piezoelastic shell is composed of N laminate, and each of the lamina
can be either elastic material or piezoelastic material. It is assumed that the
piezoelastic shell is exposed to coupled mechanical, electrical, and thermal
excitations. All relations of displacement, strain, electric, and temperature "elds are
established in an orthogonal curvilinear co-ordinate system (a

1
, a

2
, a

3
).

Considering small deformation of the laminated piezoelastic shell, one can derive
the strain S

ij
, electric "eld E

i
, and temperature gradient g

i
equations. The

strain}displacement relations, electric "eld}electric potential relations, and
temperature gradient}temperature relations in a tri-orthogonal shell co-ordinate
system are de"ned as follows:
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where S
ij
, E

i
, and g

i
denote the strains, electric "elds and temperature gradients

respectively. R
1
and R

2
are the radii of principal curvature: A

1
and A

2
are the LameH

parameters.

4. PIEZOTHERMOELASTIC FINITE ELEMENT FORMULATION

A new 12-node, 60 degree-of-freedom curved triangular laminated
piezothermoelastic shell element is developed. The assumptions of layerwise
constant shear angle and linear variation along thickness of each layer are
used in the "nite element derivations [14]. Figure 1 illustrates the triangular
shell element.
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Figure 1. Triangular piezothermoelastic shell composite element.
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where c is a transverse co-ordinate de"ned for the ith layer. Equations (32)}(36) can
be simply written as
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is the thickness of the ith layer. The interpolation functions of the
surface-parallel displacements, electric potential and temperature in each triangular
region at the ith or (i#1)th interface are chosen to be continuous piecewise
quadratic in the form
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where a
i
(i"1,2, 6) are constants, and a
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(i"1, 2, 3) are the global co-ordinates.

Due to the continuity across the edge between two adjacent triangles, equation (40)
becomes
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function. Substituting equations (41)}(45) into equations (37)}(39) leads to the
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Substituting equations (4)}(6), (37)}(39), and (46)} (51) into equations (17)} (19),
one can derive the nodal governing equations of the jth (planar) element located on
the ith (thickness) layer in a matrix form:
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where a and b are Rayleigh's coe$cients and are related by [17]
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where m
i
and u

i
are the initial damping ratio and natural frequencies. If two damping

ratios and two natural frequencies are speci"ed, equation (66) results in an exact
solution for a and b. If more than two damping ratios and frequencies are speci"ed,
a least-squares solution procedure can be used to determine a and b. The developed
new piezothermoelastic shell element and associated "nite element code are used in
active control of plates and shells presented next.

5. NUMERICAL EXAMPLES

Two examples are presented in this section. One is the static de#ection analysis of
a piezoelectric laminated composite plate in which the "nite element solutions are
compared with published "nite element and experimental results. The other is the
distributed vibration control of a semicircular shell subjected to mechanical and
temperature (thermal shock) excitations. The control part has been well established
and detailed discussion about control can be found in papers [2, 3, 14]. In this study,
the negative velocity feedback is used in all examples.



Figure 2. Piezoelectric laminated plate composite.
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5.1. CANTILEVER PLATE WITH PIEZOELECTRIC ACTUATOR

Application of piezoelectric "lm as distributed actuators to piezoelectric
laminated composite plates are evaluated. In this case, a cantilevered laminated
[0/$45]

S
composite plate with distributed G-1195 piezoelectric ceramics bonded

on the surfaces of the composite plate is studied. Dimensions of the laminated plate
are shown in Figure 2.

A constant "eld (394 V/mm) is applied to the piezoelectric "lm laminated on each
side of the plate. Displacement of the plate along the two parallel edges and the
centerline are calculated and resolved into three non-dimensional displacements:
=

1
"D

2
/B,=

2
"(D

3
!D

1
)/B,=

3
"[D

2
!(D

3
#D

1
)/2]/B, where B"15)2 cm

is the width of the plate, D
1
, D

2
and D

3
are the lateral de#ections of three points in

the free edge shown in Figure 2, and=
1
,=

2
, and=

3
are the longitudinal bending,

lateral twisting, and transverse bending de#ections respectively. Finite element
solutions are compared with the experimental results [4] and other "nite element
results [6] in Figure 3. Figure 3(a) indicates the out-of-plane longitudinal bending
=

1
as a function of the position. The solid line is the solution based on the "nite

element model, which agrees with the experiment result very well. Figures 3(b) and
3(c) show the lateral twisting=

2
and transverse bending=

3
as a function of the

position. In spite of the scattering of the experiment data, the solutions still
compare reasonably with the experiments and other numerical solutions. Note that
the order of magnitudes in Figures 3(b) and (c) is di!erent from that in Figure 3(a).
Thus, it is reasonable to state that the newly developed "nite element code can be
con"dently used to analyze piezoelectrical-laminated composite structures.



Figure 3. Static de#ections of the composite plate: (a) longitudinal bending: (b) lateral twisting, and
(c) transverse bending; T, experiment [4]; n, FEM [6]; and e, present.
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5.2. DISTRIBUTED CONTROL OF A CANTILEVER SEMICIRCULAR SHELL

Vibration control of shells di!ers from that of plates because of the coupling of
bending and membrane oscillations. In this case, multiple pairs of sensors and
actuators are used to sense and control the shell vibration. Four strip
sensor/actuator pairs are laminated on a semicircular shell, in which the bottom
strips serve as sensors and top strips serve as actuators. Figure 4(a). For each pair of
sensor/actuator, an output signal is provided by the bottom sensor, ampli"ed, and
then fed back to the top actuator resulting in control forces/moments for vibration
control of the semicircular shell. The piezoelectric material is the polymeric
polyvinylidene #uoride (PVDF) and the elastic shell is made of steel. The elastic
shell is 200 mm long, 150 mm wide, and 0)8 mm thick, and its inner radius is
63)662 mm. Each top PVDF actuator on the outer shell surface is 202)5 mm long,
15 mm wide, and 28 km thick. Each bottom PVDF sensor on the inner surface is
200 mm long, 15 mm wide, and 28 lm thick. All materil properties are given in
Table 1. Because of the di$culty to obtain the properties varied with temperature,
all material properties in the table assumed constants.

For "nite element analysis, the elastic shell is divided into a 10]10 mesh, and each
sensor/actuator strip is 1]10, Figure 4(b). Thus, there are 200 triangular elastic
elements for the elastic shell and 80 triangular piezothermoelastic elements for four
PVDF sensor/actuator strips. Free-vibration eigenvalue analysis suggests that the
"rst "ve natural frequencies are f

1
"37)87 Hz (bending mode), f

2
"138)55 Hz (2nd

bending mode), f
3
"471)27 Hz (3rd bending mode), f

4
"894)91 Hz (4th bending

mode), and f
5
"1054)25 Hz (coupled bending/torsion mode). The initial damping

of the shell is assumed to be 0)2%. Active vibration control of the shell with
mechanical and temperature (thermal shock) excitations are investigated next.

5.2.1. Control of snap-back responses

Free and controlled snap-back responses of the shell with an initial displacement
of 1 cm at the free and are studied. A set of feedback gains u

1
, 2)0u

1
, and 5)5u

1
are

used, respectively, for the negative velocity feedback control. Free response and
a controlled response (gain"2)0u

1
) of node-1 (see Figure 4) are shown in Figures

5(a) and 5(b) respectively. The 2-D controlled end response at gain"2)0u
1

is also
presented in Figure 5(c) where TIME is time (s), > is the free end width (m), and
DISP is the displacement response (cm). It is observed that the higher modes are
also coupled with the fundamental mode (the bending mode) at the time between
0)0 and 0)2 s, and they quickly vanish because of the combined e!ect of damping
and frequency.

The decay envelopes of node 1 for di!erent control gains are plotted and
compared in Figure 6. Note that the shell response is better controlled with the
increased control gain.

5.2.2. Control of thermal excitation

Controlled responses of the shell with thermal shock excitations are also studied.
The shell is instantly exposed to a thermal shock temperature di!erence between
the bottom and the top surfaces. It is assumed that the temperature of the top



Figure 4. Piezoelectric laminated semicircular shell: (a) model and dimensions and (b) "nite
element modelling.
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surface is !103C and the bottom surface is 103C. Due to the thermal gradient
shock of the two surfaces (!10/103C), the shell oscillates and "nally converges to
a new equilibrium position. The negative velocity feedback control gains 0)0, 1)0u

1
,

2)0u
1
, and 5)5u

1
are used. Decay envelopes of free and controlled responses (the



TABLE 1

Material properties of steel and piezoelectric P<DF

Properties Steel PVDF Units

Young's modulus, >: 0)21]1012 0)2]1010 Pa
The Poisson ratio, k: 0)3 0)29
Density, o: 7)8]103 1)8]103 kg/m3
Thermal conductivity, K: 35)0 0)17 W/m10 C
Thermal expansion, a : 1)1]10~5 1)2]10~4 3C~1
Piezo strain constant, d

31
: 2)2]10~11 m/V

Electric permittivity, e
11

: 1)062]10~10 F/m
Pyroelectric constant, P

n
: 0)25]10~4 C/m2/3C

Capacitance, C : 3)8]10~6 F/m2
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negative velocity feedback control with gains 0)0, 1)0u
1
, 2)0u

1
, and 5)5u

1
) induced

by the thermal shock are shown in Figure 7. All these responses should reach at the
"nal steady state de#ection, (;

1
,;

3
)"(0)16737 cm, 0)135069 cm).

5.2.3. Control of combined temperature and snap-back responses

In this case, both the initial displacement (1 cm) and the thermal gradient shock
(!10/103C) are considered as the input to the shell. Since the system is linear, the
resulting responses are the summation of two individual responses and so the
controlled responses. Free and controlled (gains 0)0, 1)0u

1
, 2)0u

1
, and 5)5u

1
)

displacement envelopes of node 1 are shown in Figure 8. Again, since there is
a thermal gradient induced de#ection, all responses converge to a "nal steady state
equilibrium position (;

1
,;

3
)"(0)16737 cm, 0)135069 cm).

6. CONCLUSIONS

Many mechanical and structural systems are working in a temperature-varied
condition. Shell-type components and structures are very common parts in these
systems. Modelling and control of these shell-type structures post many
challenging issues. If piezoelectric materials are used as sensors and actuator, the
study of piezothermoelastic materials and structures becomes necessary. In this
paper, modelling, analysis and active vibration control of piezothermoelastic
laminated shells are addressed and numerical examples demonstrated.

Piezothermoelastic constitutive equations, governing equations, and boundary
conditions of a generic piezothermoelastic continuum were de"ned "rst. Finite
element formulations of a new triangular piezothermoelastic shell element were
presented and matrix equations of the piezothermoelastic shell laminated system
were derived, in which mechanical, temperature, and electric couplings were
de"ned. The electric force vector was used in active control of the shell laminates.

The newly developed triangular piezothermoelastic shell "nite element was used
to model a piezoelectric laminated composite plate to validate the new "nite



Figure 5. Free and controlled responses: (a) free snap-back response, (b) controlled response, and
(c) 2-D controlled response of the free edge.
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Figure 6. Comparison of free and controlled displacement envelopes (snap-back responses); ],
gain"0)0; n, gain"1)0; w, gain"2)0; and e, gain"5)5.

Figure 7. Comparison of free and controlled displacement envelopes (thermal shock responses): ],
gain"0)0; n, gain"1)0; w, gain"2)0; and e, gain"5)5.

Figure 8. Comparison of free and controlled displacement envelopes (snap-back plus thermal
shock responses): ], gain"0)0; n, gain"1)0; w, gain"2)0; and e, gain"5)5.
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element code. Finite element solutions of the piezoelectric laminated composite
plate were compared favorably with published experimental data and numerical
solutions. Next the distributed control of a piezoelectric laminated semicircular
shell subjected to mechanical and thermal shock excitations was investigated.
Active control e!ects of the shell with mechanical and temperature excitations were
studied. This study suggests that the newly developed "nite element technique is
capable for modelling and analyzing complicated piezothermoelastic shell systems.
Distributed sensing and control e!ectiveness of piezoelectric laminated system can
be studied and various design options evaluated.
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